CapLibrate: Self-Calibration of an Energy Harvesting Power Supply with Supercapacitors
نویسندگان
چکیده
Achieving perpetual and self-sustaining operation of wireless sensor nodes is an important topic of current research in the field of energy harvesting. Closely related to this is the employment of energy budgeting, i.e., effective utilization of available and future energy resources without pushing a node towards the hazard of energy depletion. Therefore, reliable prediction of node lifetime in context of the available energy within a given time is required. This in turn requires self-calibration of the sensor nodes and their energy harvesting supply. In this paper, we explore and assess models for a supercapacitorbased harvesting supply. The parameters of the models are discussed and determined, so that fast, reliable, and energyefficient calibration becomes possible. Moreover, measurement results for a specific hardware platform are discussed and a roadmap for a self-calibration algorithm is presented.
منابع مشابه
A Study of the Linear Electromagnetic Generator for Harvesting Electrical Energy from Initial Acceleration: Design, Optimization, and Experimental Validation
One of the important requirements in projectiles is to design a power supply for fuse consumption. In this study, an optimum design for the power supply, which includes a Miniaturized Inertia Generator (MIG), was introduced. The main objective of this research was to optimize the dimensions of the MIG with the aim of increasing energy. To achieve this, the design of experiment (DOE) was carried...
متن کاملAn Investigation into Resonant Frequency of Triangular V-Shaped Cantilever Piezoelectric Vibration Energy Harvester
Power supply is a bottle-neck problem of wireless micro-sensors, especially where the replacement of batteries is impossible or inconvenient. Now piezoelectric material is being used to harvest vibration energy for self-powered sensors. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise an...
متن کاملMiniaturized Solar Scavengers for Ultra-low Power Wireless Sensor Nodes
Recently, solar energy harvesting circuits have been proposed to increase the autonomy of wireless sensor nodes. When the size of the photovoltaic module is very small, optimizing the efficiency of energy collection and tracking the Maximum Power Point (MPP) becomes hard and less effective. This paper tackles the challenge of powering a sensor node with miniaturized photovoltaic modules of some...
متن کاملA Highly Stretchable Fiber-Based Triboelectric Nanogenerator for Self-Powered Wearable Electronics
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com (1 of 8) 1604378 multidisciplinary fields.[1,2] As a result, stretchable devices, such as lithium-ion batteries,[3] organic light-emitting diodes,[4] electrochemical supercapacitors,[5] fieldeffect transistors,[6] and artificial skin sensors[7,8] have been widely studied. This new class of electronics allows devices to be ...
متن کامل9-5 AC Power Supply Circuits for Energy Harvesting
Passive energy harvesting from mechanical vibration has wide application in wearable and embedded sensors to complement or replace batteries. Energy harvesting efficiency can be increased by eliminating AC/DC conversion. A test chip demonstrating self-timing, power-on-reset circuitry, and memory for energy harvesting AC voltages has been designed in 180 nm CMOS and tested. Circuit operation is ...
متن کامل